Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Unbiased evaluation of morphology is crucial to understanding development, mechanics, and pathology of striated muscle tissues. Indeed, the ability of striated muscles to contract and the strength of their contraction is dependent on their tissue-, cellular-, and cytoskeletal-level organization. Accordingly, the study of striated muscles often requires imaging and assessing aspects of their architecture at multiple different spatial scales. While an expert may be able to qualitatively appraise tissues, it is imperative to have robust, repeatable tools to quantify striated myocyte morphology and behavior that can be used to compare across different labs and experiments. There has been a recent effort to define the criteria used by experts to evaluate striated myocyte architecture. In this review, we will describe metrics that have been developed to summarize distinct aspects of striated muscle architecture in multiple different tissues, imaged with various modalities. Additionally, we will provide an overview of metrics and image processing software that needs to be developed. Importantly to any lab working on striated muscle platforms, characterization of striated myocyte morphology using the image processing pipelines discussed in this review can be used to quantitatively evaluate striated muscle tissues and contribute to a robust understanding of the development and mechanics of striated muscles.more » « less
-
The heart has a dynamic mechanical environment contributed by its unique cellular composition and the resultant complex tissue structure. In pathological heart tissue, both the mechanics and cell composition can change and influence each other. As a result, the interplay between the cell phenotype and mechanical stimulation needs to be considered to understand the biophysical cell interactions and organization in healthy and diseased myocardium. In this work, we hypothesized that the overall tissue organization is controlled by varying densities of cardiomyocytes and fibroblasts in the heart. In order to test this hypothesis, we utilized a combination of mechanical strain, co-cultures of different cell types, and inhibitory drugs that block intercellular junction formation. To accomplish this, an image analysis pipeline was developed to automatically measure cell type-specific organization relative to the stretch direction. The results indicated that cardiac cell type-specific densities influence the overall organization of heart tissue such that it is possible to model healthy and fibrotic heart tissue in vitro. This study provides insight into how to mimic the dynamic mechanical environment of the heart in engineered tissue as well as providing valuable information about the process of cardiac remodeling and repair in diseased hearts.more » « less
-
Habituation and sensitization represent nonassociative learning mechanisms in both non‐neural and neural organisms. They are essential for a range of functions from survival to adaptation in dynamic environments. Design of hardware for neuroinspired computing strives to emulate such features driven by electric bias and can also be incorporated into neural network algorithms. Herein, cellular‐like learning in oxygen‐deficient NiOxdevices is demonstrated. Both habituation learning and sensitization response can be achieved in a single device by simply controlling the magnitude of the electric field. Spontaneous memory relaxations and dynamic redistribution of oxygen vacancies under electric bias enable such learning behavior of NiOxunder sequential training. These characteristics in simple device arrays are implemented to learn alphabets as well as demonstrate simulated algorithmic use cases in digit recognition. Transition metal oxides with carefully prepared defect concentrations can be highly sensitive to electronic structure perturbations under moderate electrical stimulus and serve as building blocks for next‐generation neuroinspired computing hardware.more » « less
An official website of the United States government
